

WHITE PAPER

SCHEMAS FOR A XML STANDARD

A CASE STUDY

ERIK S IEGEL
V1.0 - 15 - DEC-2003

 S C H E M A S F O R A XML S T A N D A R D - A C A S E S T U D Y
 V 1 . 0 - 15 -D E C -2 0 0 3

TA B L E O F C O N T E N T S

 PA G E 2 O F 1 7

0. TABLE OF CONTENTS

0. Table of contents.. 2
0.1. Usage and copyrights... 2
0.2. Accompanying software... 2

1. Introduction .. 3
2. The setting ... 4
3. Creating the XML schemas ... 5

3.1. Constraints and design decisions... 5
3.2. The generation process ... 6

3.2.1. Using the data model .. 7
3.2.2. Defining the message content...10
3.2.3. Putting it all together..12

3.3. The end result..13
4. Evaluation .. 17

0.1. USAGE AND COPYRIGHTS

Usage and circulation of this document and of the ideas described is not restricted. You
can do with it whatever you like, provided that you mention the author (Erik Siegel) and
the source URL (www.siegel-ict.nl).
I would however appreciate it if you told me about using this document or the ideas de-
scribed in it. You can do this by simply sending me an e-mail about it (erik@siegel-
ict.nl). Also, if you have any comments (good or bad), other ideas or complementary
information, please send me an e-mail. I am looking forward to hear from you.

0.2. ACCOMPANYING SOFTWARE

On my site (www.siegel-ict.nl) you can find the Designer output to Excel software
described in paragraph 3.2.1 on page 7. It is provided in two formats: As an installation
executable and as a zip file containing all the sources. An example Designer output file is
included so you can try it.
This software is provided “as is”: I will not provide any support for it. On the other side,
you can try it, study it, modify it and do with it whatever you like.
I would appreciate it if you told me about using the software or the source code. You can
do this by simply sending me an e-mail about it (erik@siegel-ict.nl). Also, if you
have any comments (good or bad), other ideas or complementary information, please
send me an e-mail. I am looking forward to your reactions.

 S C H E M A S F O R A XML S T A N D A R D - A C A S E S T U D Y
 V 1 . 0 - 15 -D E C -2 0 0 3

I N T R O D U C T I O N

 PA G E 3 O F 1 7

1. INTRODUCTION

When companies need to communicate a lot to get work done, they will sooner or later
start thinking about automating this. In most cases this is a complicated and time-con-
suming process. You need to agree about the functionality, format and content of the
messages, the technical details for actually sending and receiving them, the legal side of
it, and much, much more. Setting up a business-to-business (B2B) communication stan-
dard isn’t easy.
However, the reward can be enormous: Increased volumes of business transactions, de-
creased number of errors, etc. Sometimes because of the automation whole new markets
open up.
Nor so long ago, this kind of B2B communication was done using the EDI standards. For
several reasons, with a few notable exceptions, EDI never really made it as an important
standard. Nowadays, these kinds of processes are automated using XML technology.
However, whatever technology is used to implement things, the groundwork will stay the
same: Somebody must analyze the communication processes, create a common data
model, design messages and message flows, etc. After this is done and agreed upon, the
technical people come in and design the actual messages, the infrastructure and all the
other necessary technical bits and pieces to make it work.

This is a case study about a small but significant step in a XML standard creation process:
The analysts were ready, we knew what we wanted to do and there was a huge formal
data and communication model. Now, from this, we needed to design the actual messages
and create XML schemas. Maintenance was an important issue, because this was only
version one and things would evolve.
Since the standard was quite large, hand crafting all message schemas was definitely not a
good idea: It would have been next to impossible to get all the details, like field types and
sizes, completely right. But inconsistencies between standard and actual messages were
not acceptable…

This whitepaper explains how we automated the conversion from data/communication
model into the actual XML message schemas. It involves an interesting mix of technolo-
gies, resulting in not only the schemas themselves but also a full set of documentation, all
generated and therefore easily maintained.

The reader is expected to have a basic understanding of XML and what an XML schema
is. Detailed understanding of the XML schema or other standards is not necessary, except
for some minor details in paragraph 3.3.

 S C H E M A S F O R A XML S T A N D A R D - A C A S E S T U D Y
 V 1 . 0 - 15 -D E C -2 0 0 3

T H E S E T T I N G

 PA G E 4 O F 1 7

2. THE SETTING

This chapter explains a little bit about the setting the standardization effort took place in.

If somebody wants to place an advertisement in a newspaper or magazine, lots of infor-
mation needs to be transferred. Some examples:
§ What newspapers/magazines should it be in and in what section?
§ Is this only once or a recurring placement? If recurring, what frequency/which dates?
§ What kind of advertisement is this?
§ What is the format of the advertisement: Color (if so, what color scheme), black and

white, what size, etc.
§ Is this advertisement part of an overall contract so you get a discount?
§ What is the status for this advertisement: Option only, reservation, actual placement,

etc.
In most cases all this information is transferred using phone, fax or e-mail. As you can
imagine, the result will not always be correct and in most cases time and labor consuming
and therefore expensive.

A number of big players on this market in the Netherlands decided to do something about
it. In 2002 they started a standardization project called Ad\Venture. Most of the work was
done in 2002/2003.
The main idea was to standardize all the administrative communication around advertis-
ing. This does not only include the communication described above, but also invoicing,
complaint handling and contract handling.
Ad\Venture was a huge and complex undertaking that was complicated even more be-
cause little standardization existed so far. Most companies involved did things their own
way, resulting in incompatible business processes and back-end systems. They all looked
alike but were very different in the details that counted.

The way Ad\Venture solved this incompatibility problem was to create an overall virtual
data and communication model. It was the common denominator of the models of the
parties involved. You must view it as the data/communication model for an overall media
company that does not (yet) exist.
Of course, this wasn’t as simple as it sounds. Companies had made conflicting decisions
on how to handle things. Simple field formats, like for a name or an address, did not
match. Every company had their own algorithm for calculating the price for an adver-
tisement, etc. etc.
Luckily, all parties were very committed in making this project a success. So after long
debates about lots of details a virtual model was decided upon. It consisted of:
§ A large functional data model (also called Entity-Relationship Diagram, ERD) de-

signed with and stored in Oracle Designer 2000.
§ State diagrams for all communication processes
§ Detailed documentation

With this as input, the technical people (like me) came in. My job was to design XML
schemas for all the messages. Other people worked on the actual communication, imple -
menting a message hub and communication protocols.

The rest of this white paper explains how the schema creation was designed and struc-
tured. Because the details of the standard are still under non-disclosure, I cannot convey
too much about it. However, I think the way the schemas were created is interesting
enough on its own and has a much wider applicability than this project alone.

 S C H E M A S F O R A XML S T A N D A R D - A C A S E S T U D Y
 V 1 . 0 - 15 -D E C -2 0 0 3

C R E A T I N G T H E X M L S C H E M A S

 PA G E 5 O F 1 7

3. CREATING THE XML SCHEMAS

As explained in the previous chapter, the starting point for the XML schema creation
consisted of:
§ A functional data model (ERD) stored in Oracle Designer 2000.
§ An informal model of the communication, consisting of some state diagrams and writ-

ten documentation. A lot of information about message content was still inside peo-
ple’s heads.

This chapter explains how, with this as input, the actual XML schemas were created.

3.1. CONSTRAINTS AND DESIGN DECISIONS

In creating the XML schemas, I had some important constraints:
§ Repeatability: Since the standard was very likely to evolve, the whole process must

be repeatable.
§ Traceability and understandability: XML Schemas are not easy to read and under-

stand. So the whole process, from inputs to schemas, must be traceable: A non-XML
expert should, with some effort, be able to understand what was happening. In this
light, the end results must be understandable: Why are certain constructions there, why
is this field here, where is the information, etc.

§ Documented: Linked to the constraint above was that the resulting schemas should
have human readable documentation attached. Luckily, most of the information for the
documentation was already in the data model.

§ Cooperation with non-XML experts : To create the schemas some extra input was
needed. This input had to be created by an analyst that had some knowledge of XML
but preferred working in a more user friendly environment than a text editor typing
XML tags.

§ Not real-time : Also important to keep in kind is that the whole schema creation proc-
ess was not real-time and not, within reason, time bound. So performance of the soft-
ware was not an issue.

§ Time and budget constraints: Of course (I haven’t been in a project that didn’t), the
project had tight time and budget constraints. So an all-out software development ef-
fort was out of the question. To save time and effort, I had to use tools that were
known and proven to me.

With all this in mind, I made the following design decisions:
§ Excel as intermediate format : XML is ok for the technical users and of course, as a

schema, it is the end product, but in this case it was not useable for extra input infor-
mation or in-between results that needed to be manually checked.
Of course, we could have used XML editors that made the input of data less cumber-
some. Also, we could have created XSLT transformations that converted the XML
files to more readable HTML pages for checking purposes. However, I decided not to
do this because it would simply take me too much time.
After some initial tinkering I decided to use Excel as an intermediate format. It is very
well structured, easy to generate and read (with COM enabled programming tools) and
everybody knows how to handle it.

§ Use Visual Basic: When you want to use Excel, you need a programming tool that can
handle COM/ActiveX. From previous projects I have a lot of experience with Visual
Basic (V6 EE), so I decided to use this, saving me the learning curve for a new tool.

 S C H E M A S F O R A XML S T A N D A R D - A C A S E S T U D Y
 V 1 . 0 - 15 -D E C -2 0 0 3

C R E A T I N G T H E X M L S C H E M A S

 PA G E 6 O F 1 7

§ Use XML Spy: In working with XML, I like to work with a tool that helps me with
this. I had some experience with XML Spy and decided to use it here also. Some tasks
I used it for were:
§ Parts of the schemas were fixed and I needed a tool to design these. Also, I needed

something to create example schemas before I could design the schema generator
well enough. XML Spy has a graphical schema designer and generates high qual-
ity output.

§ I needed a way to easily validate the outcome of my schema generator: Was what I
had produced a valid schema? XML Spy can do this for you.

3.2. THE GENERATION PROCESS

Given the inputs and the constraints/design decisions I had to create the XML schemas
and the accompanying documentation. It did not take long for me to realize that creating
them by hand was not the way to go: Too many schemas and almost impossible to get all
the zillion of details right. So, creating a generator was the way to go.

In the diagram below is a simplified representation what the generator finally looked like:

ERD in Oracle
Designer
database

Textfile with
ERD contents

Excel file with
ERD contents

ERD Convertor

Excel file with
message
definitions

Schema
generator

Directory
structure with
schemas and

documentation

1

2

3

4

5

6

Hoofd directory Algemeen

Berichttype
groep 1

Conversie log bestand (*.log)

Conversie invoerbestanden (*.xls)

HTML index pagina naar de
verschillende berichttypes (index.htm)

W3C Schema voor berichttype (*.xsd)

HTML Documentatie pagina voor dit
berichttype (*.htm)

Algemene bestanden

Directory heet naar
berichttype groep,
bijvoorbeeld
Ordering of
Contracten

Berichttype
groep 2

 S C H E M A S F O R A XML S T A N D A R D - A C A S E S T U D Y
 V 1 . 0 - 15 -D E C -2 0 0 3

C R E A T I N G T H E X M L S C H E M A S

 PA G E 7 O F 1 7

1 An important starting point was the data model (ERD) stored in Oracle Designer
2000.

2 From this an export was made.
3 With a VB program, this ERD export was converted into an Excel file.
Steps 1 to 3 is explained in more detail in paragraph 3.2.1 on page 7.

4 The necessary information about message content was recorded in another Excel
file.

Step 4 is explained ion more detail in paragraph 3.2.2 on page 10.

5 A generator program took both Excel files together and generated the end result
The generator program is described in paragraph 3.2.3 on page 12.

6 The end result is a directory structure, containing the schemas and HTML
documentation.

Details about the end result can be found in paragraph 3.3 on page 13.

3.2.1. USING THE DATA MODEL

One of the inputs for the generation process was a huge functional data model (ERD)
designed and stored in Oracle Designer 2000. This data model contained information
about:
§ The various entities (tables) that made up the data model.
§ The attributes (fields) for these entities.
§ The relations between the entities.
We tried several ways of exporting data from Designer, but none fitted our needs. Espe-
cially the version control of Designer got in the way. At last we decided not to use any
formal export format, but an ASCII dump of a report that you would normally use for
print.1
Here is an example of the definition of an entity in such a report:

12 June 2003 Page 4 of 92
 Entity Definition

 Container: Adventure Version: 1.12

 Entity

 Name : ADRES
 Short Name : ADR
 Plural Name : ADRESSEN
 Description
 Plaats waar iemand of iets gevestigd is of bereikbaar is.

 Attributes * - Attributes in primary unique identifier

 Name Domain Opt Format Length Scale
 LAND ALFANUM050 N VARCHAR2 50
 PLAATS ALFANUM050 N VARCHAR2 50
 * POSTCODE POSTCODE N CHAR 7
 STRAAT ALFANUM050 N VARCHAR2 50
 * HUISNUMMER ALFANUM010 Y VARCHAR2 10
 * TOEVOEGSEL ALFANUM010 Y VARCHAR2 10

 Relationships * - Relationships in primary unique identifier

 Each Occurrence Of This Entity :
 MAY BE kent one or more PARTIJ ADRESSEN

1 This report can be created with an Oracle Designer tool called “Repository reports”, generating an “Entity
definition report”. Use the settings “file print”, “character mode” and “wide”.

 S C H E M A S F O R A XML S T A N D A R D - A C A S E S T U D Y
 V 1 . 0 - 15 -D E C -2 0 0 3

C R E A T I N G T H E X M L S C H E M A S

 PA G E 8 O F 1 7

 Unique Identifiers

 Name Primary? Attrib.Name Relationship To Entity Name
 ---- -------- ------------ ------------ --------------
 PK_ADR Yes HUISNUMMER
 POSTCODE
 TOEVOEGSEL

As you can see in the upper right-hand corner, there were 92 pages of this kind of detailed
information. To be able to work with this, it needed to be converted it into something
more suitable for direct processing.
Automatic interpretation of this Oracle Designer output turned out not to be trivial. Some
of the problems I encountered were:
§ Large multi-line page header/footer sections that interspersed the text, sometimes in

the middle of a data table. For some reason, not all header/footer sections had the
same number of lines or were formatted the same.

§ Text that printed well but because of creative use of CR/LF codes, split into lines in a
very strange way. The convertor needed to read ahead or come back on decisions
made earlier.

§ Column settings in data tables (like for instance the attributes table in the example
above) caused data to be wrapped to the next line. However, column data can also
contain spaces. See the example below and guess the name of the attribute:
AFSPRAAKNUMMERME or AFSPRAAKNUMMER ME? It took some experimenting with the
conversion software to get it right most of the time but nothing is guaranteed.

Name Primary? Attrib.Name
---- -------- ------------
PK_PRA Yes AFSPRAAKNUMMER
 ME

Options for the conversion output format that came to mind first were an Access database
or, of course, an XML file. However, since the conversion process was not guaranteed to
be 100% right, it became more and more important to be able to view the conversion
results directly and also to alter or amend them easily. So I decided to put the results in an
Excel file.
For every entity definition a new sheet is created that hold the most important data. On
the next page is an example of such a sheet. It is the conversion result of the ADRES entity
in the example above.

 S C H E M A S F O R A XML S T A N D A R D - A C A S E S T U D Y
 V 1 . 0 - 15 -D E C -2 0 0 3

C R E A T I N G T H E X M L S C H E M A S

 PA G E 9 O F 1 7

Example of a generated Excel worksheet holding the information for an entity from the original ERD.

 S C H E M A S F O R A XML S T A N D A R D - A C A S E S T U D Y
 V 1 . 0 - 15 -D E C -2 0 0 3

C R E A T I N G T H E X M L S C H E M A S

 PA G E 1 0 O F 1 7

3.2.2. DEFINING THE MESSAGE CONTENT

Besides the data model, we needed a way to define the actual message content. We
choose to use Excel for this also.
Using Excel enabled us to create the definitions fast without the need for custom data
input software. After we decided on the format for the Excel sheets, the analyst was able
to define the messages quickly. They were send by e-mail to me and I used them to gen-
erate the actual schemas and documentation.

For every group of messages (all messages in a group have the same schema) we created
an Excel sheet. There is an example of such a sheet on the next page. The messages this
sheet defines are about complaint handling.
If you look at the example, you see several blocks of data:
§ The two blocks on the left are for documentation purposes only. They contain impor-

tant information about what the messages are for and their code numbers. This infor-
mation returns in the documentation that is generated with the schemas.

§ The block labeled “Basis entiteiten” (“Base entities”) contains the starting entities for
the schema generation. The resulting schema in the example will start with a choice
element between a FACTUURKLACHT and a PLAATSINGSKLACHT. Both these names
exist as an entity in the data model.

§ The block to the right labeled “Mee te nemen relaties” (“Relations to use”) defines
what relations should be used in creating the schema.
Take for instance the first line of this block: A FACTUURKLACHT (invoice complaint)
is always about a FACTUUR (invoice). The relation between FACTUURKLACHT and
FACTUUR is defined in the data model:

 Relationships * - Relationships in primary unique identifier

 Each Occurrence Of This Entity :
 MUST BE betreft one and only one FACTUUR

Since we are defining a message about an invoice complaint, this message must iden-
tify the invoice the complaint is about. So this relation is important and should be part
of the resulting schema. The result is that some attributes of FACTUUR will be part of
the schema for these messages.

§ The block labeled “Gegevenselementen” (“Data elements” or “Attributes”) contains
the name of the attributes/fields that must be in the schema. No further definition of
attributes is necessary here (type, size, etc.), because the convertor can look up the
details in the data model.

 S C H E M A S F O R A XML S T A N D A R D - A C A S E S T U D Y
 V 1 . 0 - 15 -D E C -2 0 0 3

C R E A T I N G T H E X M L S C H E M A S

 PA G E 1 1 O F 1 7

Example of an Excel sheet holding a message definition.

 S C H E M A S F O R A XML S T A N D A R D - A C A S E S T U D Y
 V 1 . 0 - 15 -D E C -2 0 0 3

C R E A T I N G T H E X M L S C H E M A S

 PA G E 1 2 O F 1 7

3.2.3. PUTTING IT ALL TOGETH ER

Another Visual Basic program was written to put it all together and to create the re-
quested schemas and documentation. It performed the following actions:
§ It opened both the Excel files and checked if they had the expected format.
§ It cleared the output directory.
§ It copied some fixed information to the output:
§ A HTML page containing general documentation
§ Schema files that were common to all the generated schemas. The generated sche-

mas included these files.
§ Some other documentation files.

§ It took a worksheet in the message content definition file and generated the schema
and documentation for this. Every time this definition referenced something from the
data model (relations between entities, attributes, etc.), it looked in the data model Ex-
cel file for the details.

§ After the actual generation it checked whether it had used all the information on the
message content sheet. If not, it generated an error because in most cases this meant
some mistake was made.

§ It took the generated schema and validated it using an XML Spy library function. This
was necessary to detect possible compatibility problems with fixed schemas that were
included.

§ After all schemas were generated it created index HTML pages so you could navigate
through the generated documentation more easily.

 S C H E M A S F O R A XML S T A N D A R D - A C A S E S T U D Y
 V 1 . 0 - 15 -D E C -2 0 0 3

C R E A T I N G T H E X M L S C H E M A S

 PA G E 1 3 O F 1 7

3.3. THE END RESULT

The end result was a directory tree containing the schemas and documentation.

To explain a little more about the structure of the generated schemas, let me first intro-
duce an example message:

<?xml version="1.0" encoding="UTF-8"?>

<ADVENTUREBERICHT
 BerichtType="BD_B001"
 Versie="1.0"
 Bericht="Opt-B01">

 <!-- Start of envelope information -->
 <AFZENDER>
 <ADVENTURENR>12345678</ADVENTURENR>
 <NAAM>Jan Jansen</NAAM>
 </AFZENDER>
 <ONTVANGER>
 <ADVENTURENR>87654321</ADVENTURENR>
 <NAAM>Piet Pietersen</NAAM>
 </ONTVANGER>
 <VERZENDTIJDSTIP>2003-06-02T12:00:00</VERZENDTIJDSTIP>
 <ONDERWERP>Aanvragen optie voor ... </ONDERWERP>
 <OPMERKINGEN>Denk erom dat ... </OPMERKINGEN>
 <!-- End of envelope information -->

 <!-- Start of actual message -->
 <BERICHT>
 <OPTIE-IN-COMBINATIE>
 <OPTIE>
 <VERVALDATUM>2004-05-21</VERVALDATUM>
 <ORDER>

 </ORDER>
 </OPTIE>
 </OPTIE-IN-COMBINATIE>
 </BERICHT>
 <!-- End of actual message -->

</ADVENTUREBERICHT>

§ All messages use <ADVENTUREBERICHT> as the root element. The attributes of the
root element define what kind of message this is. With the in formation in these attrib-
utes you can find the schema for this message (in this example it would be in a file
called BD_B001-1.0.xsd).

§ All messages start with the same envelope information. This holds information about
the sender and receiver, a timestamp, etc.

§ The actual message is always in an element called <BERICHT> (Dutch for “message”).
The content of this element varies with the message type.

 S C H E M A S F O R A XML S T A N D A R D - A C A S E S T U D Y
 V 1 . 0 - 15 -D E C -2 0 0 3

C R E A T I N G T H E X M L S C H E M A S

 PA G E 1 4 O F 1 7

A schema that defines a message structure like the one above is build up as follows:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified">

 <!-- === -->
 <!-- Generator: D:\Erik\Work\Adventure\Convert\AdventureConvertor.exe -->
 <!-- Generator version: V1.0.13 23-mei-2003 11:28 -->
 |
 Comments about how and when this schema was generated and
 what messages it is for.
 |
 <!-- Messages: -->
 <!-- Opt-E02: ME wijst optie af. -->
 <!-- Opt-E05: ME communiceerd het binnen 24 uur vervallen optie. -->
 <!-- === -->

 <!-- Includes: -->

 Fixed include files with information about the message
 envelope and some general types.
 |
 <xs:include schemaLocation="../Algemeen/DomainTypes.xsd"/>
 <xs:include schemaLocation="../Algemeen/Envelop.xsd"/>

 <!-- === -->

 For every entity used in this message a complex type is
 defined.
 |
 <!-- === Complex type definition for entity MEDEWERKER === -->
 <xs:complexType name="ctyp-MEDEWERKER">
 ...
 </xs:complexType>

 etc.

 <!-- === -->
 <!-- Main content type: -->

 The main content structure of a message is always defined
 in a complex type with the name ctyp-BerichtInhoud
 (Message Content).
 |
 <xs:complexType name="ctyp-BerichtInhoud">
 <xs:choice>
 <xs:element name="ORDER" type="ctyp-ORDER"/>
 etc.
 </xs:choice>
 </xs:complexType>

 S C H E M A S F O R A XML S T A N D A R D - A C A S E S T U D Y
 V 1 . 0 - 15 -D E C -2 0 0 3

C R E A T I N G T H E X M L S C H E M A S

 PA G E 1 5 O F 1 7

 <!-- === -->
 <!-- Main element: -->

 Finally the root element is defined. This is always
 <ADVENTUREBERICHT>. It is an extension of a centrally defined
 complex type called ctyp-ADVENTURE-ENVELOP (defined in an
 include file).
 The extensions define the attribute values for the root element.
 The ctyp-ADVENTURE-ENVELOP type in turn defines an element
 called <BERICHT> with the type ctyp-BerichtInhoud (defined
 above) as its content.
 |
 <xs:element name="ADVENTUREBERICHT">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="ctyp-ADVENTURE-ENVELOP">
 <xs:attribute name="BerichtType" type="xs:string"
 use="required" fixed="BD_E004"/>
 <xs:attribute name="Versie" type="xs:string"
 use="required" fixed="1.0"/>
 <xs:attribute name="Bericht" use="required">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="Opt-E02"/>
 <xs:enumeration value="Opd-E02"/>
 etc.
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>

 <!-- === -->

</xs:schema>

Finally two screenshots of the generated documentation:

 S C H E M A S F O R A XML S T A N D A R D - A C A S E S T U D Y
 V 1 . 0 - 15 -D E C -2 0 0 3

C R E A T I N G T H E X M L S C H E M A S

 PA G E 1 6 O F 1 7

The documentation is fully bookmarked. Clicking on a link brings you immediately to the
right page/location.

 S C H E M A S F O R A XML S T A N D A R D - A C A S E S T U D Y
 V 1 . 0 - 15 -D E C -2 0 0 3

EV A L U A T I O N

 PA G E 1 7 O F 1 7

4. EVALUATION

Looking back on the project, I feel the following things are important lessons learned:

Things I think we did right:
§ Although this had nothing to do with generating the schemas, creating a virtual

data/communication model for a standardization effort like this is very efficient. It
made all the choices and definitions very clear and unambiguous. And, of course, it
was a very valuable input for the schema creation process.

§ Do not hand craft schemas for a standard like this. It would have been next to impossi-
ble to get every detail right. A new version of the standard would have been a mainte-
nance nightmare. Generating them is the way to go.

§ The same applies to the accompanying documentation. If you take care that your data
model and other inputs are documented well, you can generate high quality documen-
tation automatically. If you use HTML, you cross-reference the documentation (with
hyperlinks) easily.

§ Excel files are a very well suited as an intermediate data format in these kinds of proc-
esses. It allows you to view and amend the result without the need for extra data in-
put/reporting software. Any COM/ActiveX enabled programming environment can
read/write an Excel file without problems.

Things to do better next time:
§ The format for the message content file (as described in paragraph 3.2.2 on page 10)

was a little awkward and hard to do right and understand. It took several tries and ver-
sions to get it completely right. I would advise experimenting with some other formats
and put a little more effort in this than we did.

§ I defined most of the actual message structure as the XML specialist on the project.
The results were messages that were technically correct and easy to generate, but a lit-
tle hard to understand. I think it would have resulted in better messages as (one of) the
analyst(s) would have done this. If you do this, it is not necessary to design the XML
directly: An overall structure idea would have been sufficient.

